Enhancement of ant colony optimization for QoS-aware web service selection

28Citations
Citations of this article
17Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

In service-oriented computing, web services composition is the process of translating user requirements into a workflow. This workflow comprises many tasks, each of which includes an abstract definition for some of the user requirements. Web services can be aggregated to handle the workflow. Many of these services are available from various providers for each task; they are referred to, in aggregate, as the candidate list. The web service selection (WSS) problem centers on selecting the best service from these candidates based on the quality of service (QoS) features. In this paper, we propose an enhancement to the ant colony optimization (ACO) algorithm based on a swap concept for the QoS-aware WSS problem. The aim of the enhancement to the ACO is to avoid the trap of local optima and reduce the search duration. We believe that the integration of many potent solutions will help the ACO algorithm yield a better solution and avoid stagnation. Several experiments were conducted to compare the proposed algorithm with the ACO and flying ACO (FACO) algorithms. Two different types of experiments using 22 datasets were done with 30 independent repetitions. The first type of experiment's results shows that the proposed algorithm is better than ACO by 12% and FACO by 11% in terms of quality of solutions. The results in the second type of experiment show that the proposed algorithm continuously outperforms both algorithms in terms of quality of solutions.

Cite

CITATION STYLE

APA

Alayed, H., Dahan, F., Alfakih, T., Mathkour, H., & Arafah, M. (2019). Enhancement of ant colony optimization for QoS-aware web service selection. IEEE Access, 7, 97041–97051. https://doi.org/10.1109/ACCESS.2019.2927769

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free