A security level classification method for power systems under N-1 contingency

13Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.

Abstract

Security assessment is crucial for the reliable and secure operation of power systems. This paper proposes a security level classification (SLC) method to analyze the security level of power systems both qualitatively and quantitatively. In this SLC method, security levels are graded according to a comprehensive safety index (CSI), which is defined by integrating the system margin index (SMI) and load entropy. The SMI depends on the operating load and the total supply capacity (TSC) under N-1 contingency, and the load entropy reflects the heterogeneity of load distribution calculated from entropy theory. In order to calculate the TSC under N-1 contingency considering both of the computational accuracy and speed, the TSC is converted into an extended conic quadratic programming (ECQP) model. In addition, the load boundary vector (LBV) model is established to obtain the capacity limit of each load bus, and thus detect potential risks of power systems. Finally, two modified practical power systems and the IEEE 118-bus test system are studied to validate the feasibility of the proposed SLC method.

Cite

CITATION STYLE

APA

Lu, Z., He, L., Zhang, D., Zhao, B., Zhang, J., & Zhao, H. (2017). A security level classification method for power systems under N-1 contingency. Energies, 10(12). https://doi.org/10.3390/en10122055

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free