Abstract
Consider the braid group B3 = 〈a, b|aba = bab〉 and the nearest neighbor random walk defined by a probability v with support [a, a -1, b, b-1}. The rate of escape of the walk is explicitly expressed in function of the unique solution of a set of eight polynomial equations of degree three over eight indeterminates. We also explicitly describe the harmonic measure of the induced random walk on B3 quotiented by its center. The method and results apply, mutatis mutandis, to nearest neighbor random walks on dihedral Artin groups. © Institute of Mathematical Statistics, 2007.
Author supplied keywords
Cite
CITATION STYLE
Mairesse, J., & Mathéus, F. (2007). Randomly growing braid on three strands and the manta ray. Annals of Applied Probability, 17(2), 502–536. https://doi.org/10.1214/105051606000000754
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.