Abstract
A maximum power point tracker (MPPT) should be designed to deal with various weather conditions, which are different from region to region. Customization is an important step for achieving the highest solar energy harvest. The latest development of modern machine learning provides the possibility to classify the weather types automatically and, consequently, assist localized MPPT design. In this study, a localized MPPT algorithm is developed, which is supported by a supervised weather-type classification system. Two classical machine learning technologies are employed and compared, namely, the support vector machine (SVM) and extreme learning machine (ELM). The simulation results show the outperformance of the proposed method in comparison with the traditional MPPT design.
Author supplied keywords
Cite
CITATION STYLE
Du, Y., Yan, K., Ren, Z., & Xiao, W. (2018). Designing localized MPPT for PV systems using fuzzy-weighted extreme learning machine. Energies, 11(10). https://doi.org/10.3390/en11102615
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.