Mitochondria are organelles that are mainly involved in the generation of ATP by cellular respiration. In addition, they modulate several intracellular functions, ranging from cell proliferation and differentiation to cell death. Importantly, mitochondria are social and can interact with other organelles, such as the Endoplasmic Reticulum, lysosomes and peroxisomes. This symbiotic relationship gives advantages to both partners in regulating some of their functions related to several aspects of cell survival, metabolism, sensitivity to cell death and metastasis, which can all finally contribute to tumorigenesis. Moreover, growing evidence indicates that modulation of the length and/or numbers of these contacts, as well as of the distance between the two engaged organelles, impacts both on their function as well as on cellular signaling. In this review, we discuss recent advances in the field of contacts and communication between mitochondria and other intracellular organelles, focusing on how the tuning of mitochondrial function might impact on both the interaction with other organelles as well as on intracellular signaling in cancer development and progression, with a special focus on calcium signaling.
CITATION STYLE
Peruzzo, R., Costa, R., Bachmann, M., Leanza, L., & Szabò, I. (2020, September 1). Mitochondrial metabolism, contact sites and cellular calcium signaling: Implications for tumorigenesis. Cancers. MDPI AG. https://doi.org/10.3390/cancers12092574
Mendeley helps you to discover research relevant for your work.