Damping constant measurement and inverse giant magnetoresistance in spintronic devices with Fe4N

12Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Fe4N is one of the attractive materials for spintronic devices due to its large spin asymmetric conductance and negative spin polarization at the Fermi level. We have successfully deposited Fe4N thin film with (001) out-of-plane orientation using a DC facing-target-sputtering system. A Fe(001)/Ag(001) composite buffer layer is selected to improve the (001) orientation of the Fe4N thin film. The N2 partial pressure during sputtering is optimized to promote the formation of Fe4N phase. Moreover, we have measured the ferromagnetic resonance (FMR) of the (001) oriented Fe4N thin film using coplanar waveguides and microwave excitation. The resonant fields are tested under different microwave excitation frequencies, and the experimental results match well with the Kittel formula. The Gilbert damping constant of Fe4N is determined to be α = 0.021±0.02. We have also fabricated and characterized the current-perpendicular-to-plane (CPP) giant magnetoresistance (GMR) device with Fe4N/Ag/Fe sandwich. Inverse giant magnetoresistance is observed in the CPP GMR device, which suggests that the spin polarization of Fe4N and Fe4N/Ag interface is negative.

Cite

CITATION STYLE

APA

Li, X., Li, H., Jamali, M., & Wang, J. P. (2017). Damping constant measurement and inverse giant magnetoresistance in spintronic devices with Fe4N. AIP Advances, 7(12). https://doi.org/10.1063/1.4994972

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free