Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes

238Citations
Citations of this article
76Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

A Pseudomonas pseudoalcaligenes able to use nitrobenzene as the sole source of carbon, nitrogen, and energy was isolated from soil and groundwater contaminated with nitrobenzene. The range of aromatic substrates able to support growth was limited to nitrobenzene, hydroxylaminobenzene, and 2- aminophenol. Washed suspensions of nitrobenzene-grown cells removed nitrobenzene from culture fluids with the concomitant release of ammonia. Nitrobenzene, nitrosobenzene, hydroxylaminobenzene, and 2-aminophenol stimulated oxygen uptake in resting cells and in extracts of nitrobenzene- grown cells. Under aerobic and anaerobic conditions, crude extracts converted nitrobenzene to 2-aminophenol with oxidation of 2 mol of NADPH. Ring cleavage, which required ferrous iron, produced a transient yellow product with a maximum A380. In the presence of NAD, the product disappeared and NADH was produced. In the absence of NAD, the ring fission product was spontaneously converted to picolinic acid, which was not further metabolized. These results indicate that the catabolic pathway involves the reduction of nitrobenzene to nitrosobenzene and then to hydroxylaminobenzene; each of these steps requires 1 mol of NADPH. An enzyme-mediated Bamberger-like rearrangement converts hydroxylaminobenzene to 2-aminophenol, which then undergoes meta ring cleavage to 2-aminomuconic semialdehyde. The mechanism for release of ammonia and subsequent metabolism are under investigation.

Cite

CITATION STYLE

APA

Nishino, S. F., & Spain, J. C. (1993). Degradation of nitrobenzene by a Pseudomonas pseudoalcaligenes. Applied and Environmental Microbiology, 59(8), 2520–2525. https://doi.org/10.1128/aem.59.8.2520-2525.1993

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free