Energy Recovery Efficiency of Integrating Anaerobic Co-Digestion of Pig Slurry and Feedlot Cattle Manure and Hydrothermal Carbonization of Anaerobic Sludge Cake

1Citations
Citations of this article
13Readers
Mendeley users who have this article in their library.

Abstract

Hydrothermal carbonization (HTC) is a technology designed to improve the efficiency of bioenergy recovery by subjecting biomass to high-temperature and high-pressure conditions. By integrating this technical feature with anaerobic digestion (AD), enhanced energy recovery efficiency is achieved in treating anaerobic digestate (AD-T). The study investigates enhancing bioenergy recovery efficiency through an integrated process, combining AD of livestock manure and HTC. The primary objective is to improve the energy conversion efficiency of biomass characterized by varying solid contents and chemical compositions. Shortening the hydraulic retention time (HRT) in AD of livestock manure resulted in decreased degradation rate efficiency within the AD-T. This led to increased solid material accumulation, which was crucial for the subsequent HTC reaction. The HTC reaction exhibited its maximum bioenergy recovery at 160 °C. The input energy of the livestock manure, obtained by mixing pig slurry and feedlot cattle manure in a 1:1 (w/w) ratio, was 171,167 MJ/day. Under different HRT conditions (40, 30, and 20 days), recoverable energy from AD of livestock manure ranged from 60,336 to 68,517 MJ/ton. Integration of HTC increased net bioenergy recovery to 106,493 to 130,491 MJ/day under corresponding HRT conditions, highlighting the potential of integrating HTC with AD from livestock manure for enhanced bioenergy recovery efficiency.

Cite

CITATION STYLE

APA

Lee, J. H., & Yoon, Y. M. (2024). Energy Recovery Efficiency of Integrating Anaerobic Co-Digestion of Pig Slurry and Feedlot Cattle Manure and Hydrothermal Carbonization of Anaerobic Sludge Cake. Processes, 12(1). https://doi.org/10.3390/pr12010198

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free