Abstract
The Mumford-Shah model is one of the most important image segmentation models and has been studied extensively in the last twenty years. In this paper, we propose a two-stage segmentation method based on the Mumford-Shah model. The first stage of our method is to find a smooth solution g to a convex variant of the Mumford-Shah model. Once g is obtained, then in the second stage the segmentation is done by thresholding g into different phases. The thresholds can be given by the users or can be obtained automatically using any clustering methods. Because of the convexity of the model, g can be solved efficiently by techniques like the split-Bregman algorithm or the Chambolle-Pock method. We prove that our method is convergent and that the solution g is always unique. In our method, there is no need to specify the number of segments K (K ≥ 2) before finding g. We can obtain any K-phase segmentations by choosing (K - 1) thresholds after g is found in the first stage, and in the second stage there is no need to recompute g if the thresholds are changed to reveal different segmentation features in the image. Experimental results show that our two-stage method performs better than many standard two-phase or multiphase segmentation methods for very general images, including antimass, tubular, MRI, noisy, and blurry images. © 2013 Society for Industrial and Applied Mathematics.
Author supplied keywords
Cite
CITATION STYLE
Cai, X., Chan, R., & Zeng, T. (2013). A two-stage image segmentation method using a convex variant of the Mumford-Shah model and thresholding. SIAM Journal on Imaging Sciences, 6(1), 368–390. https://doi.org/10.1137/120867068
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.