Super-resolution restoration of MISR images using the UCL MAGiGAN system

18Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

Abstract

High spatial resolution Earth observation imagery is considered desirable for many scientific and commercial applications. Given repeat multi-angle imagery, an imaging instrument with a specified spatial resolution, we can use image processing and deep learning techniques to enhance the spatial resolution. In this paper, we introduce the University College London (UCL) MAGiGAN super-resolution restoration (SRR) system based on multi-angle feature restoration and deep SRR networks. We explore the application of MAGiGAN SRR to a set of 9 MISR red band images (275 m) to produce up to a factor of 3.75 times resolution enhancement. We show SRR results over four different test sites containing different types of image content including urban and rural targets, sea ice and a cloud field. Different image metrics are introduced to assess the overall SRR performance, and these are employed to compare the SRR results with the original MISR input images and higher resolution Landsat images, where available. Significant resolution improvement over various types of image content is demonstrated and the potential of SRR for different scientific application is discussed.

Cite

CITATION STYLE

APA

Tao, Y., & Muller, J. P. (2019). Super-resolution restoration of MISR images using the UCL MAGiGAN system. Remote Sensing, 11(1). https://doi.org/10.3390/rs11010052

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free