Abstract
The design and preparation of new nitrogen-rich heterocyclic compounds are of considerable significance for the development of high-performing energetic materials. By combining nitrogen-rich tetrazole and oxygen-rich furoxan, a linear C-C bonded pentaheterocyclic energetic compound, 3,4-bis(3-tetrazolylfuroxan-4-yl) furoxan (BTTFO), was synthesized using a facile and straightforward method. Comprehensive X-ray analysis reveals the key role of hydrogen bonds, π-πinteractions, and short contacts in the formation of dense packing of BTTFO and explains why a long chain-shaped molecule has a high density. This multicyclic structure incorporating three furoxan and two tetrazole moieties results in an exceptionally high heat of formation (1290.8 kJ mol-1) and favorable calculated detonation performances (vD, 8621 m s-1, P, 31.5 GPa). The interesting structure and fascinating properties demonstrated the feasibility of a linear multicyclic approach as a high-energy-density skeleton. Additionally, the thermodynamic parameters, electrostatic potential (ESP), and frontier molecular orbitals were also studied to get a better understanding of structure-property correlations.
Cite
CITATION STYLE
Zhai, L., Bi, F., Zhang, J., Zhang, J., Li, X., Wang, B., & Chen, S. (2020). 3,4-Bis(3-tetrazolylfuroxan-4-yl)furoxan: A Linear C-C Bonded Pentaheterocyclic Energetic Material with High Heat of Formation and Superior Performance. ACS Omega, 5(19), 11115–11122. https://doi.org/10.1021/acsomega.0c01048
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.