Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells

60Citations
Citations of this article
40Readers
Mendeley users who have this article in their library.
Get full text

Abstract

BACKGROUND Gastric injury is the most common digestive system disease worldwide and involves inflammation, which can lead to gastric ulcer or gastric cancer (GC). Matrix metallopeptidase-9 [MMP-9 (gelatinase-B)] plays an important role in inflammation and GC progression. Quercetin and quercetin-rich diets represent potential food supplements and a source of medications for treating gastric injury given their anti-inflammatory activities. However, the effects and mechanisms of action of quercetin on human chronic gastritis and whether quercetin can relieve symptoms remain unclear. AIM To assess whether tumor necrosis factor-α (TNF-α)-induced MMP-9 expression mediates the anti-inflammatory effects of quercetin in normal human gastric mucosal epithelial cells. METHODS The normal human gastric mucosa epithelial cell line GES-1 was used to establish a normal human gastric epithelial cell model of TNF-α-induced MMP-9 protein overexpression to evaluate the antiinflammatory effects of quercetin. The cell counting Kit-8 assay was used to evaluate the effects of varying quercetin doses on cell viability in the normal GES-1 cell line. Cell migration was measured using Transwell assay. The expression of proto-oncogene tyrosine-protein kinase Src (c- Src), phospho (p)-c-Src, extracellular-signal-regulated kinase 2 (ERK2), p-ERK1/2, c-Fos, p-c-Fos, nuclear factor kappa B (NF-κB/p65), and p-p65 and the effects of their inhibitors were examined using Western blot analysis and measurement of luciferase activity. p65 expression was detected by immunofluorescence. MMP-9 mRNA and protein levels were measured by quantitative reverse transcription polymerase chain reaction (qRT-PCR) and gelatin zymography, respectively. RESULTS qRT-PCR and gelatin zymography showed that TNF-α induced MMP-9 mRNA and protein expression in a dose- and time-dependent manner. These effects were reduced by the pretreatment of GES-1 cells with quercetin or a TNF-α antagonist (TNFR inhibitor) in a dose- and timedependent manner. Quercetin and TNF-α antagonists decreased the TNF-α-induced phosphorylation of c-Src, ERK1/2, c-Fos, and p65 in a dose- and time-dependent manner. Quercetin, TNF-α antagonist, PP1, U0126, and tanshinone IIA (TSIIA) reduced TNF-α-induced c-Fos phosphorylation and AP-1-Luciferase (Luc) activity in a dose- and time-dependent manner. Pretreatment with quercetin, TNF-α antagonist, PP1, U0126, or Bay 11-7082 reduced TNF-α- induced p65 phosphorylation and translocation and p65-Luc activity in a dose- and timedependent manner. TNF-α significantly increased GES-1 cell migration, and these results were reduced by pretreatment with quercetin or a TNF-α antagonist. CONCLUSION Quercetin significantly downregulates TNF-α-induced MMP-9 expression in GES-1 cells via the TNFR-c-Src-ERK1/2 and c-Fos or NF-κB pathways.

Cite

CITATION STYLE

APA

Hsieh, H. L., Yu, M. C., Cheng, L. C., Chu, M. Y., Huang, T. H., Yeh, T. S., & Tsai, M. M. (2022). Quercetin exerts anti-inflammatory effects via inhibiting tumor necrosis factor-α-induced matrix metalloproteinase-9 expression in normal human gastric epithelial cells. World Journal of Gastroenterology, 28(11), 1139–1158. https://doi.org/10.3748/wjg.v28.i11.1139

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free