Abstract
Fasciclins (FAS1) are ancient adhesion protein domains with no common small ligand binding reported. A unique microalgal FAS1-containing astaxanthin (AXT)-binding protein (AstaP) binds a broad repertoire of carotenoids by a largely unknown mechanism. Here, we explain the ligand promiscuity of AstaP-orange1 (AstaPo1) by determining its NMR structure in complex with AXT and validating this structure by SAXS, calorimetry, optical spectroscopy and mutagenesis. α1-α2 helices of the AstaPo1 FAS1 domain embrace the carotenoid polyene like a jaw, forming a hydrophobic tunnel, too short to cap the AXT β-ionone rings and dictate specificity. AXT-contacting AstaPo1 residues exhibit different conservation in AstaPs with the tentative carotenoid-binding function and in FAS1 proteins generally, which supports the idea of AstaP neofunctionalization within green algae. Intriguingly, a cyanobacterial homolog with a similar domain structure cannot bind carotenoids under identical conditions. These structure-activity relationships provide the first step towards the sequence-based prediction of the carotenoid-binding FAS1 members.
Cite
CITATION STYLE
Kornilov, F. D., Slonimskiy, Y. B., Lunegova, D. A., Egorkin, N. A., Savitskaya, A. G., Kleymenov, S. Y., … Sluchanko, N. N. (2023). Structural basis for the ligand promiscuity of the neofunctionalized, carotenoid-binding fasciclin domain protein AstaP. Communications Biology, 6(1). https://doi.org/10.1038/s42003-023-04832-z
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.