Nanoparticles suitable for BCAA isolation can serve for use in magnetic lipoplex-based delivery system for L, I, V, or R-rich antimicrobial peptides

3Citations
Citations of this article
19Readers
Mendeley users who have this article in their library.

Abstract

This paper investigates the synthesis of paramagnetic nanoparticles, which are able to bind branched chain amino acids (BCAAs)-leucine, valine, and isoleucine and, thus, serve as a tool for their isolation. Further, by this, we present an approach for encapsulation of nanoparticles into a liposome cavity resulting in a delivery system. Analyses of valine and leucine in entire complex show that 31.3% and 32.6% recoveries are reached for those amino acids. Evaluation of results shows that the success rate of delivery in Escherichia coli (E. coli) is higher in the case of BCAAs on nanoparticles entrapped in liposomes (28.7% and 34.7% for valine and leucine, respectively) when compared to nanoparticles with no liposomal envelope (18.3% and 13.7% for valine and leucine, respectively). The nanoparticles with no liposomal envelope exhibit the negative zeta potential (-9.1 ± 0.3 mV); however, their encapsulation results in a shift into positive values (range of 28.9 ± 0.4 to 33.1 ± 0.5 mV). Thus, electrostatic interactions with negatively-charged cell membranes (approx. -50 mV in the case of E. coli) leads to a better uptake of cargo. Our delivery system was finally tested with the leucine-rich antimicrobial peptide (FALALKALKKALKKLKKALKKAL) and it is shown that hemocompatibility (7.5%) and antimicrobial activity of the entire complex against E. coli, Staphylococcus aureus (S. aureus), and methicilin-resistant S. aureus (MRSA) is comparable or better than conventional penicillin antibiotics.

Cite

CITATION STYLE

APA

Vesely, R., Jelinkova, P., Hegerova, D., Cernei, N., Kopel, P., Moulick, A., … Zitka, O. (2016). Nanoparticles suitable for BCAA isolation can serve for use in magnetic lipoplex-based delivery system for L, I, V, or R-rich antimicrobial peptides. Materials, 9(4). https://doi.org/10.3390/ma9040260

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free