Understanding city traffic dynamics utilizing sensor and textual observations

16Citations
Citations of this article
33Readers
Mendeley users who have this article in their library.

Abstract

Understanding speed and travel-time dynamics in response to various city related events is an important and challenging problem. Sensor data (numerical) containing average speed of vehicles passing through a road link can be interpreted in terms of traffic related incident reports from city authorities and social media data (textual), providing a complementary understanding of traffic dynamics. State-of-the-art research is focused on either analyzing sensor observations or citizen observations; we seek to exploit both in a synergistic manner. We demonstrate the role of domain knowledge in capturing the non-linearity of speed and travel-time dynamics by segmenting speed and travel-time observations into simpler components amenable to description using linear models such as Linear Dynamical System (LDS). Specifically, we propose Restricted Switching Linear Dynamical System (RSLDS) to model normal speed and travel time dynamics and thereby characterize anomalous dynamics. We utilize the city traffic events extracted from text to explain anomalous dynamics. We present a large scale evaluation of the proposed approach on a real-world traffic and twitter dataset collected over a year with promising results.

Cite

CITATION STYLE

APA

Anantharam, P., Thirunarayan, K., Marupudi, S., Sheth, A., & Banerjee, T. (2016). Understanding city traffic dynamics utilizing sensor and textual observations. In 30th AAAI Conference on Artificial Intelligence, AAAI 2016 (pp. 3793–3799). AAAI press. https://doi.org/10.1609/aaai.v30i1.9902

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free