Lightweight Hot-Spot Fault Detection Model of Photovoltaic Panels in UAV Remote-Sensing Image

33Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

Abstract

Photovoltaic panels exposed to harsh environments such as mountains and deserts (e.g., the Gobi desert) for a long time are prone to hot-spot failures, which can affect power generation efficiency and even cause fires. The existing hot-spot fault detection methods of photovoltaic panels cannot adequately complete the real-time detection task; hence, a detection model considering both detection accuracy and speed is proposed. In this paper, the feature extraction part of YOLOv5 is replaced by the more lightweight Focus structure and the basic unit of ShuffleNetv2, and then the original feature fusion method is simplified. Considering that there is no publicly available infrared photovoltaic panel image dataset, this paper generates an infrared photovoltaic image dataset through frame extraction processing and manual annotation of a publicly available video. Consequently, the number of parameters of the model was 3.71 M, mAP was 98.1%, and detection speed was 49 f/s. A comprehensive comparison of the accuracy, detection speed, and model parameters of each model showed that the indicators of the new model are superior to other detection models; thus, the new model is more suitable to be deployed on the UAV platform for real-time photovoltaic panel hot-spot fault detection.

Cite

CITATION STYLE

APA

Zheng, Q., Ma, J., Liu, M., Liu, Y., Li, Y., & Shi, G. (2022). Lightweight Hot-Spot Fault Detection Model of Photovoltaic Panels in UAV Remote-Sensing Image. Sensors, 22(12). https://doi.org/10.3390/s22124617

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free