A model for transient oxygen delivery in cerebral cortex

  • Ress D
N/ACitations
Citations of this article
42Readers
Mendeley users who have this article in their library.

Abstract

Popular hemodynamic brain imaging methods, such as blood oxygen-level dependent functional magnetic resonance imaging (BOLD fMRI), would benefit from a detailed understanding of the mechanisms by which oxygen is delivered to the cortex in response to brief periods of neural activity. Tissue oxygen responses in visual cortex following brief visual stimulation exhibit rich dynamics, including an early decrease in oxygen concentration, a subsequent large increase in concentration, and substantial late-time oscillations ("ringing"). We introduce a model that explains the full time-course of these observations made by Thompson et al. (2003). The model treats oxygen transport with a set of differential equations that include a combination of flow and diffusion in a three-compartment (intravascular, extravascular, and intracellular) system. Blood flow in this system is modeled using the impulse response of a lumped linear system that includes an inertive element; this provides a simple biophysical mechanism for the ringing. The model system is solved numerically to produce excellent fits to measurements of tissue oxygen. The results give insight into the dynamics of cerebral oxygen transfer, and can serve as the starting point to understand BOLD fMRI measurements.

Cite

CITATION STYLE

APA

Ress, D. (2009). A model for transient oxygen delivery in cerebral cortex. Frontiers in Neuroenergetics, 1. https://doi.org/10.3389/neuro.14.003.2009

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free