Investigation of the heat transfer by conduction and convection through a finned housing of an electric motor rated 373 W operated in the drive unit of a vacuum pump was carried out. As the speed is changed, so is the velocity of air flow, and consequently, the coefficient of heat transfer across the housing surface is changed too. To predict the values of the average heat transfer coefficient and to determine the heat flow that was dissipated at variable motor speed is a complex task, for which no reliable tools can be found in the literature. Using finite element approximation, the heat transfer was numerically simulated and the temperature distribution on the housing surface was determined. In order to validate the simulation model, an experimental set-up was assembled, including the vacuum pump complete with its driving unit, that is, electrical motor and frequency converter, and FLIR SC7600 thermovision camera. Using the validated simulation model, the heat flux transferred through the housing to the environment and the share of heat dissipation in the power consumed by the vacuum pump drive was determined. The combination of numerical simulation and thermographic measurements is an effective tool.
CITATION STYLE
Wernik, J. (2017). Investigation of heat loss from the finned housing of the electric motor of a vacuum pump. Applied Sciences (Switzerland), 7(12). https://doi.org/10.3390/app7121214
Mendeley helps you to discover research relevant for your work.