This paper presents and evaluates a control scheme and a power electronics architecture for aWirelessly Enabled and Distributed Battery Energy Storage (WEDES) system. It includes several independent battery modules (WEDES-MX modules) that transfer both power and information wirelessly to an On-Board Unit (OBU). Using wirelessly communicated State-Of-Charge (SOC) information from the WEDES-MX modules, the OBU part of the WEDES controller generates control commands and send them back to the WEDES-MX modules in order to control the amount of power/energy drawn from each WEDES-MX module and achieve SOC balancing. The presented controller also allows the WEDES system to maintain operation with a regulated bus voltage even if one or more WEDES-MX modules are removed or fail and under both balanced and unbalanced SOC conditions. The WEDES system with the presented WEDES controller when utilized in Electric Vehicle (EV) application, can allow for fast and safe exchange/swapping of WEDES-MX modules at an exchange station, home, or work and therefore potentially eliminating the range (mileage) anxiety issue that is associated with EVs' range and the needed recharging time. The main objective of this paper is to present and evaluate the WEDES discharging controller for the WEDES system and present preliminary proof-of-concept scaled-down experimental prototype results.
CITATION STYLE
Qahouq, J. A., & Cao, Y. (2018). Control scheme and power electronics architecture for a wirelessly distributed and enabled battery energy storage system. Energies, 11(7). https://doi.org/10.3390/en11071887
Mendeley helps you to discover research relevant for your work.