Background: A new coupled global climate model (CGCM) has been developed at the Center of Excellence for Climate Change Research (CECCR), King Abdulaziz University (KAU), known as Saudi-KAU CGCM. Purpose: The main aim of the model development is to generate seasonal to subseasonal forecasting and long-term climate simulations. Methods: The Saudi-KAU CGCM currently includes two atmospheric dynamical cores, two land components, three ocean components, and multiple physical parameterization options. The component modules and parameterization schemes have been adopted from different sources, and some have undergone modifications at CECCR. The model is characterized by its versatility, ease of use, and the physical fidelity of its climate simulations, in both idealized and realistic configurations. A description of the model, its component packages, and parameterizations is provided. Results: Results from selected configurations demonstrate the model’s ability to reasonably simulate the climate on different time scales. The coupled model simulates El Niño-Southern Oscillation (ENSO) variability, which is fundamental for seasonal forecasting. It also simulates Madden-Julian Oscillation (MJO)-like disturbances with features similar to observations, although slightly weaker. Conclusions: The Saudi-KAU CGCM ability to simulate the ENSO and the MJO suggests that it is capable of making useful predictions on subseasonal to seasonal timescales.
CITATION STYLE
Almazroui, M., Tayeb, O., Mashat, A. S., Yousef, A., Al-Turki, Y. A., Abid, M. A., … Hantoush, A. S. (2017). Saudi-KAU Coupled Global Climate Model: Description and Performance. Earth Systems and Environment, 1(1). https://doi.org/10.1007/s41748-017-0009-7
Mendeley helps you to discover research relevant for your work.