Identification of a Precursor to Phosphatidyl Choline-Specific B-1 Cells Suggesting That B-1 Cells Differentiate from Splenic Conventional B Cells In Vivo: Cyclosporin A Blocks Differentiation to B-1

  • Arnold L
  • McCray S
  • Tatu C
  • et al.
48Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.
Get full text

Abstract

The origin of B-1 cells is controversial. The initial paradigm posited that B-1 and B-2 cells derive from separate lineages. More recently it has been argued that B-1 cells derive from conventional B cells as a result of T-independent Ag activation. To understand B-1 cell differentiation, we have generated Ig transgenic (Tg) mice using the H and L chain genes (VH12 and Vκ4) of anti-phosphatidyl choline (anti-PtC) B cells. In normal mice anti-PtC B cells segregate to B-1. Segregation is intact in VH12 (6-1) and VH12/Vκ4 (double) Tg mice that develop large numbers of PtC-specific B cells. However, if B-1 cell differentiation is blocked, anti-PtC B cells in these Tg mice are B-2-like in phenotype, suggesting the existence of an Ag-driven differentiative pathway from B-2 to B-1. In this study, we show that double Tg mice have a population of anti-PtC B cells that have the phenotypic characteristics of both B-2 and B-1 cells and that have the potential to differentiate to B-1 (B-1a and B-1b). Cyclosporin A blocks this differentiation and induces a more B-2-like phenotype in these cells. These findings indicate that these cells are intermediate between B-2 and B-1, further evidence of a B-2 to B-1 differentiative pathway.

Cite

CITATION STYLE

APA

Arnold, L. W., McCray, S. K., Tatu, C., & Clarke, S. H. (2000). Identification of a Precursor to Phosphatidyl Choline-Specific B-1 Cells Suggesting That B-1 Cells Differentiate from Splenic Conventional B Cells In Vivo: Cyclosporin A Blocks Differentiation to B-1. The Journal of Immunology, 164(6), 2924–2930. https://doi.org/10.4049/jimmunol.164.6.2924

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free