Empirical evaluation of the use of computational hla binding as an early filter to the mass spectrometry-based epitope discovery workflow

3Citations
Citations of this article
23Readers
Mendeley users who have this article in their library.

Abstract

Immunopeptidomics is used to identify novel epitopes for (therapeutic) vaccination strategies in cancer and infectious disease. Various false discovery rates (FDRs) are applied in the field when converting liquid chromatography-tandem mass spectrometry (LC-MS/MS) spectra to pep-tides. Subsequently, large efforts have recently been made to rescue peptides of lower confidence. However, it remains unclear what the overall relation is between the FDR threshold and the per-centage of obtained HLA-binders. We here directly evaluated the effect of varying FDR thresholds on the resulting immunopeptidomes of HLA-eluates from human cancer cell lines and primary hepatocyte isolates using HLA-binding algorithms. Additional peptides obtained using less stringent FDR-thresholds, although generally derived from poorer spectra, still contained a high amount of HLA-binders and confirmed recently developed tools that tap into this pool of otherwise ignored peptides. Most of these peptides were identified with improved confidence when cell input was increased, supporting the validity and potential of these identifications. Altogether, our data suggest that increasing the FDR threshold for peptide identification in conjunction with data filtering by HLA-binding prediction, is a valid and highly potent method to more efficient exhaustion of immunopeptidome datasets for epitope discovery and reveals the extent of peptides to be rescued by recently developed algorithms.

Cite

CITATION STYLE

APA

Bouzid, R., de Beijer, M. T. A., Luijten, R. J., Bezstarosti, K., Kessler, A. L., Bruno, M. J., … Buschow, S. I. (2021). Empirical evaluation of the use of computational hla binding as an early filter to the mass spectrometry-based epitope discovery workflow. Cancers, 13(10). https://doi.org/10.3390/cancers13102307

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free