Diffraction-limited storage-ring vacuum technology

33Citations
Citations of this article
16Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Some of the characteristics of recent ultralow-emittance storage-ring designs and possibly future diffraction-limited storage rings are a compact lattice combined with small magnet apertures. Such requirements present a challenge for the design and performance of the vacuum system. The vacuum system should provide the required vacuum pressure for machine operation and be able to handle the heat load from synchrotron radiation. Small magnet apertures result in the conductance of the chamber being low, and lumped pumps are ineffective. One way to provide the required vacuum level is by distributed pumping, which can be realised by the use of a non-evaporable getter (NEG) coating of the chamber walls. It may not be possible to use crotch absorbers to absorb the heat from the synchrotron radiation because an antechamber is difficult to realise with such a compact lattice. To solve this, the chamber walls can work as distributed absorbers if they are made of a material with good thermal conductivity, and distributed cooling is used at the location where the synchrotron radiation hits the wall. The vacuum system of the 3GeV storage ring of MAXIV is used as an example of possible solutions for vacuum technologies for diffraction-limited storage rings. © 2014 International Union of Crystallography.

Cite

CITATION STYLE

APA

Al-Dmour, E., Ahlback, J., Einfeld, D., Tavares, P. F., & Grabski, M. (2014). Diffraction-limited storage-ring vacuum technology. Journal of Synchrotron Radiation, 21(5), 878–883. https://doi.org/10.1107/S1600577514010480

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free