Abstract
We propose AutoID, a human identification system that leverages the measurements from existing WiFi-enabled Internet of Things (IoT) devices and produces the identity estimation via a novel sparse representation learning technique. The key idea is to use the unique fine-grained gait patterns of each person revealed from the WiFi Channel State Information (CSI) measurements, technically referred to as shapelet signatures, as the”fingerprint” for human identification. For this purpose, a novel OpenWrt-based IoT platform is designed to collect CSI data from commercial IoT devices. More importantly, we propose a new optimization-based shapelet learning framework for tensors, namely Convex Clustered Concurrent Shapelet Learning (C 3 SL), which formulates the learning problem as a convex optimization. The global solution of C 3 SL can be obtained efficiently with a generalized gradient-based algorithm, and the three concurrent regularization terms reveal the inter-dependence and the clustering effect of the CSI tensor data. Extensive experiments are conducted in multiple real-world indoor environments, showing that AutoID achieves an average human identification accuracy of 91% from a group of 20 people. As a combination of novel sensing and learning platform, AutoID attains substantial progress towards a more accurate, cost-effective and sustainable human identification system for pervasive implementations.
Cite
CITATION STYLE
Zou, H., Zhou, Y., Yang, J., Gu, W., Xie, L., & Spanos, C. J. (2018). WiFi-based human identification via convex tensor shapelet learning. In 32nd AAAI Conference on Artificial Intelligence, AAAI 2018 (pp. 1711–1718). AAAI press. https://doi.org/10.1609/aaai.v32i1.11497
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.