Drought-induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in Selaginella

19Citations
Citations of this article
53Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Lycophytes are the earliest diverging extant lineage of vascular plants, sister to all other vascular plants. Given that most species are adapted to ever-wet environments, it has been hypothesized that lycophytes, and by extension the common ancestor of all vascular plants, have few adaptations to drought. We investigated the responses to drought of key fitness-related traits such as stomatal regulation, shoot hydraulic conductance (Kshoot) and stem xylem embolism resistance in Selaginella haematodes and S. pulcherrima, both native to tropical understory. During drought stomata in both species were found to close before declines in Kshoot, with a 50% loss of Kshoot occurring at −1.7 and −2.5 MPa in S. haematodes and S. pulcherrima, respectively. Direct observational methods revealed that the xylem of both species was resistant to embolism formation, with 50% of embolized xylem area occurring at −3.0 and −4.6 MPa in S. haematodes and S. pulcherrima, respectively. X-ray microcomputed tomography images of stems revealed that the decline in Kshoot occurred with the formation of an air-filled lacuna, disconnecting the central vascular cylinder from the cortex. We propose that embolism-resistant xylem and large capacitance, provided by collapsing inner cortical cells, is essential for Selaginella survival during water deficit.

Cite

CITATION STYLE

APA

Cardoso, A. A., Visel, D., Kane, C. N., Batz, T. A., García Sánchez, C., Kaack, L., … McAdam, S. A. M. (2020). Drought-induced lacuna formation in the stem causes hydraulic conductance to decline before xylem embolism in Selaginella. New Phytologist, 227(6), 1804–1817. https://doi.org/10.1111/nph.16649

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free