Abstract
Toll-like receptor (TLR) 2 functions as a sensor for detecting various microbial components conserved in bacteria or fungi in innate immunity. TLR2 induces several signalling pathways linking to activation of the transcriptional factors NF-κB and AP-1 as well as induction of cell death. In human embryonic kidney 293 cells expressed human TLR2, mycoplasmal lipoproteins (MLP) or staphylococcal peptidoglycans (PGN) induced sustained phosphorylation of p38 mitogen-activated protein kinase (MAPK), accompanied by generation of reactive oxygen species. This observation encouraged us to examine roles of apoptosis signal-regulating kinase 1 (ASK1) in TLR2 signalling, because ASK1 is an upstream activator of p38 MAPK during exposure to oxidative stress and other stressful stimuli. A kinase-inactive mutant of ASK1 greatly impaired the sustained phosphorylation of p38 MAPK induced by MLP or PGN. This mutant also attenuated MLP- or PGN-induced transcriptional activities of NF-κB and AP-1 via inhibition of p38 MAPK activation. MLP- or PGN-induced cell death reactions, including DNA fragmentation and caspase-3/7 activation, were also downregulated by the ASK1 mutant via p38 MAPK inhibition. Furthermore, TLR2 signalling had a potential to phosphorylate and dephosphorylate ASK1 at Ser83 residue. Thus, MLP and PGN have capabilities to induce ASK1-dependent signalling pathways which regulate p38 MAPK activation through TLR2, leading to activation of NF-κB and AP-1 as well as induction of cell death. © 2005 Blackwell Publishing Ltd.
Cite
CITATION STYLE
Into, T., & Shibata, K. I. (2005). Apoptosis signal-regulating kinase 1-mediated sustained p38 mitogen-activated protein kinase activation regulates mycoplasmal lipoprotein- and staphylococcal peptidoglycan-triggered Toll-like receptor 2 signalling pathways. Cellular Microbiology, 7(9), 1305–1317. https://doi.org/10.1111/j.1462-5822.2005.00558.x
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.