Abstract
For a model for the propagation of a curvature sensitive interface in a time independent random medium, as well as for a linearized version which is commonly referred to as Quenched Edwards-Wilkinson equation, we prove existence of a stationary positive supersolution at non-vanishing applied load. This leads to the emergence of a hysteresis that does not vanish for slow loading, even though the local evolution law is viscous (in particular, the velocity of the interface in the model is linear in the driving force). © European Mathematical Society 2011.
Author supplied keywords
Cite
CITATION STYLE
Dirr, N., Dondl, P. W., & Scheutzow, M. (2011). Pinning of interfaces in random media. Interfaces and Free Boundaries, 13(3), 411–421. https://doi.org/10.4171/IFB/265
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.