Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression

20Citations
Citations of this article
35Readers
Mendeley users who have this article in their library.

Abstract

Myocardial infarction triggers massive biochemical changes, even cardiac cell death. Endoplasmic reticulum stress is involved in the pathology of myocardial infarction-mediated apoptosis. In the present study, myocardial cell line H9c2 cells were treated with cobalt chloride (CoCl2) to induce hypoxia. Isoproterenol was used for two successive days to induce myocardial infarction in SD rats. The cardioprotective effect of olive leaf extract (OLE) and its main constituent hydroxytyrosol and the underlying mechanisms were evaluated. The results showed that hydroxytyrosol markedly protected H9c2 cells against CoCl2-induced apoptosis. Hydroxytyrosol could reduce the mRNA and protein expression of GRP78 and CHOP induced by CoCl2 in vitro. In vivo, the decreased ejection fraction and fractional shortening, increased heart weight/body ratio, the formation of infarction, disordered cardiac muscle fibers and infiltration of inflammatory cells induced by isoproterenol could be significantly ameliorated by pretreatment with OLE for a month. Similarly, OLE could also reverse the increase of GRP78 and CHOP expression induced by isoproterenol. Therefore, OLE and hydroxytyrosol exert a cardioprotective effect through endoplasmic reticulum stress, which could be a new target for the prevention and treatment of cardiovascular diseases.

Cite

CITATION STYLE

APA

Wu, L., Xu, Y., Yang, Z., & Feng, Q. (2018). Hydroxytyrosol and olive leaf extract exert cardioprotective effects by inhibiting GRP78 and CHOP expression. Journal of Biomedical Research, 32(5), 371–379. https://doi.org/10.7555/JBR.32.20170111

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free