MicroRNA (miR)-106b serves an essential function in a variety of human cancer types, particularly in the process of invasion and metastasis. However, the function and mechanism of miR-106b in the invasion and metastasis of esophageal squamous cell carcinoma (ESCC) has remained elusive. In the present study, it was demonstrated that miR-106b was upregulated in ESCC tissues and cell lines. Furthermore, miR-106b expression in ESCC tissues was positively associated with lymphatic metastasis. Inhibition of miR-106b in EC-1 and EC9706 cells decreased not only the invasion and metastasis ability but also the proliferation ability of EC-1 and EC9706 cells. In addition, miR-106b had the ability to induce epithelial-to-mesenchymal transition (EMT) in EC-1 and EC9706 cells. In terms of the underlying mechanism, it was revealed that miR-106b promoted the invasion, metastasis and proliferation ability of EC-1 and EC9706 cells by directly targeting phosphatase and tension homolog (PTEN). Furthermore, miR-106b induced EMT in EC-1 and EC9706 cells by suppressing the expression of PTEN. In summary, the present study revealed that miR-106b contributed to invasion and metastasis in ESCC by regulating PTEN mediated EMT. Downregulation of miR-106b may be a novel strategy for preventing tumor invasion and metastasis.
CITATION STYLE
Zhang, J., Chen, D., Liang, S., Wang, J., Liu, C., Nie, C., … Wang, F. (2018). Mir-106b promotes cell invasion and metastasis via PTEN mediated EMT in ESCC. Oncology Letters, 15(4), 4619–4626. https://doi.org/10.3892/ol.2018.7861
Mendeley helps you to discover research relevant for your work.