Abstract
It is occasionally necessary to smooth data over domains in R2 with complex irregular boundaries or interior holes. Traditional methods of smoothing which rely on the Euclidean metric or which measure smoothness over the entire real plane may then be inappropriate. This paper introduces a bivariate spline smoothing function defined as the minimizer of a penalized sum-of-squares functional. The roughness penalty is based on a partial differential operator and is integrated only over the problem domain by using finite element analysis. The method is motivated by and applied to two sample smoothing problems and is compared with the thin plate spline.
Author supplied keywords
Cite
CITATION STYLE
Ramsay, T. (2002). Spline smoothing over difficult regions. Journal of the Royal Statistical Society. Series B: Statistical Methodology, 64(2), 307–319. https://doi.org/10.1111/1467-9868.00339
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.