Determination of the controlling parameters for dislocation nucleation in SrTiO3: An investigation by nanoindentation

3Citations
Citations of this article
5Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

We conduct nanoindentation to investigate dislocation nucleation in SrTiO3 (STO) single crystals with surface orientations of (0 0 1), (0 1 1), and (1 1 1) with loading/unloading rates of 25, 250, and 2500 μN/s. Results reveal that the critical loads (Pc) at which “pop-in” event occurs depend strongly on surface orientations, but slightly related to loading rate. Based on Pc, the critical shear stress that triggers dislocation nucleation was determined by extracting the maximum resolved shear stress (τmax) along the slip systems of STO using the Hertzian solution. The dislocation activation shear stress (τa) was determined by averaging τmax. The determined τa is 9.0–12.0 GPa, close to the shear strength (∼G/2π) of STO, indicating that homogeneous dislocation nucleation dominates the pop-in events. The consistency of the determined τa demonstrates that the frameworks for nanoindentation pop-in analysis established for metals can be extended to ceramics, whereas the influence of the limited slip systems should be taken into consideration. Additionally, we estimated the activation volume and the activation energy via the statistical model proposed by Schuh et al. The small values of the determined activation volume (0.6–9.8 Å3) and the activation energy (0.13–0.70 eV) indicate that the dislocation nucleation possibly begins from a single-atom migration and local point defects may participate in the dislocation nucleation process. That is, heterogeneous nucleation may exist initially but the homogeneous dislocation nucleation dominates the pop-in events.

Cite

CITATION STYLE

APA

Wang, X., Liu, X., Li, Y., & Fang, X. (2023). Determination of the controlling parameters for dislocation nucleation in SrTiO3: An investigation by nanoindentation. Journal of the American Ceramic Society, 106(10), 6085–6097. https://doi.org/10.1111/jace.19218

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free