Abstract
Background: Chronic obstructive pulmonary disease (COPD) is one of the leading causes of morbidity and mortality worldwide, and emphysema is a common component of COPD. Currently, it is very difficult to detect early stage emphysema using conventional radiographic imaging without contrast agents, because the change in X-ray attenuation is not detectable with absorption-based radiography. Compared with the absorption-based CT, phase contrast imaging has more advantages in soft tissue imaging, because of its high spatial resolution and contrast.Methods: In this article, we used diffraction enhanced imaging (DEI) method to get the images of early stage emphysematous and healthy samples, then extract X-ray absorption, refraction, and ultra-small-angle X-ray scattering (USAXS) information from DEI images using multiple image radiography (MIR). We combined the absorption image with the USAXS image by a scatter plot. The critical threshold in the scatter plot was calibrated using the linear discriminant function in the pattern recognition.Results: USAXS image was sensitive to the change of tissue micro-structure, it could show the lesions which were invisible in the absorption image. Combined with the absorption-based image, the USAXS information enabled better discrimination between healthy and emphysematous lung tissue in a mouse model. The false-color images demonstrated that our method was capable of classifying healthy and emphysematous tissues.Conclusion: Here we present USAXS images of early stage emphysematous and healthy samples, where the dependence of the USAXS signal on micro-structures of biomedical samples leads to improved diagnosis of emphysema in lung radiographs. © 2014 Dong et al.; licensee BioMed Central Ltd.
Author supplied keywords
Cite
CITATION STYLE
Dong, L., Li, J., Jian, W., Zhang, L., Wu, M., Shi, H., & Luo, S. (2014). Emphysema early diagnosis using X-ray diffraction enhanced imaging at synchrotron light source. BioMedical Engineering Online, 13(1). https://doi.org/10.1186/1475-925X-13-82
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.