Turing instabilities on Cartesian product networks

21Citations
Citations of this article
26Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The dispersion relation which controls the onset of the instability depends on a set of discrete wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex networks are also obtained under specific prescriptions. In this case, the criteria for the instability reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray reaction kinetics confirm the adequacy of the proposed theory.

Cite

CITATION STYLE

APA

Asllani, M., Busiello, D. M., Carletti, T., Fanelli, D., & Planchon, G. (2015). Turing instabilities on Cartesian product networks. Scientific Reports, 5. https://doi.org/10.1038/srep12927

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free