Modulations in martensitic Heusler alloys originate from nanotwin ordering

52Citations
Citations of this article
43Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Heusler alloys exhibiting magnetic and martensitic transitions enable applications like magnetocaloric refrigeration and actuation based on the magnetic shape memory effect. Their outstanding functional properties depend on low hysteresis losses and low actuation fields. These are only achieved if the atomic positions deviate from a tetragonal lattice by periodic displacements. The origin of the so-called modulated structures is the subject of much controversy: They are either explained by phonon softening or adaptive nanotwinning. Here we used large-scale density functional theory calculations on the Ni2MnGa prototype system to demonstrate interaction energy between twin boundaries. Minimizing the interaction energy resulted in the experimentally observed ordered modulations at the atomic scale, it explained that a/b twin boundaries are stacking faults at the mesoscale, and contributed to the macroscopic hysteresis losses. Furthermore, we found that phonon softening paves the transformation path towards the nanotwinned martensite state. This unified both opposing concepts to explain modulated martensite.

Cite

CITATION STYLE

APA

Gruner, M. E., Niemann, R., Entel, P., Pentcheva, R., Rößler, U. K., Nielsch, K., & Fähler, S. (2018). Modulations in martensitic Heusler alloys originate from nanotwin ordering. Scientific Reports, 8(1). https://doi.org/10.1038/s41598-018-26652-6

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free