In recent years, China has been vigorously carrying out the planning and implementation of Sponge City. Since the implementation of Sponge City projects involves substantial materials and energy consumption, it is significant to account corresponding carbon emissions and sinks. The existed studies about carbon emission of stormwater management measures, however, are not able to take the whole life cycle and different facilities into consideration. Therefore, this study develops a comprehensive accounting model based on Intergovernmental Panel on Climate Change (IPCC) guidelines and life cycle assessment (LCA) method to predict carbon emissions and carbon sinks of Sponge City projects more comprehensively and accurately. The model is applied to an actual residential community in Shanghai as a case study. Results show that the total indirect carbon emission is estimated to be 774,277 kg CO2 eq during a 30-year lifespan, among which carbon emissions from operation and maintenance phases are 2570 kg CO2 eq/year and 7309 kg CO2 eq/year, respectively, both directly proportional to the service life of the facilities. Three kinds of achievable carbon sinks are carbon sequestration in green space (5450 kg CO2 eq/year), carbon sink from rainwater utilization (15,379 kg CO2 eq/year) and carbon sink from runoff pollutant removal (19,552 kg CO2 eq/year). Carbon neutrality is expected to be reached after approximately 19 years. The established carbon emission accounting model can contribute to better planning and construction of Sponge City in China and enhance further energy conservation and carbon emission reduction.
CITATION STYLE
Lin, X., Ren, J., Xu, J., Zheng, T., Cheng, W., Qiao, J., … Li, G. (2018). Prediction of life cycle carbon emissions of sponge city projects: A case study in Shanghai, China. Sustainability (Switzerland), 10(11). https://doi.org/10.3390/su10113978
Mendeley helps you to discover research relevant for your work.