Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI

5Citations
Citations of this article
20Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

Objectives: Time-resolved, 2D-phase-contrast MRI (2D-CINE-PC-MRI) enables in vivo blood flow analysis. However, accurate vessel contour delineation (VCD) is required to achieve reliable results. We sought to evaluate manual analysis (MA) compared to the performance of a deep learning (DL) application for fully-automated VCD and flow quantification and corrected semi-automated analysis (corSAA). Methods: We included 97 consecutive patients (age = 52.9 ± 16 years, 41 female) with 2D-CINE-PC-MRI imaging on 1.5T MRI systems at sinotubular junction (STJ), and 28/97 also received 2D-CINE-PC at main pulmonary artery (PA). A cardiovascular radiologist performed MA (reference) and corSAA (built-in tool) in commercial software for all cardiac time frames (median: 20, total contours per analysis: 2358 STJ, 680 PA). DL-analysis automatically performed VCD, followed by net flow (NF) and peak velocity (PV) quantification. Contours were compared using Dice similarity coefficients (DSC). Discrepant cases (> ± 10 mL or > ± 10 cm/s) were reviewed in detail. Results: DL was successfully applied to 97% (121/125) of the 2D-CINE-PC-MRI series (STJ: 95/97, 98%, PA: 26/28, 93%). Compared to MA, mean DSC were 0.91 ± 0.02 (DL), 0.94 ± 0.02 (corSAA) at STJ, and 0.85 ± 0.08 (DL), 0.93 ± 0.02 (corSAA) at PA; this indicated good to excellent DL-performance. Flow quantification revealed similar NF at STJ (p = 0.48) and PA (p > 0.05) between methods while PV assessment was significantly different (STJ: p < 0.001, PA: p = 0.04). A detailed review showed noisy voxels in MA and corSAA impacted PV results. Overall, DL analysis compared to human assessments was accurate in 113/121 (93.4%) cases. Conclusions: Fully-automated DL-analysis of 2D-CINE-PC-MRI provided flow quantification at STJ and PA at expert level in > 93% of cases with results being available instantaneously. Key Points: • Deep learning performed flow quantification on clinical 2D-CINE-PC series at the sinotubular junction and pulmonary artery at the expert level in > 93% of cases. • Location detection and contouring of the vessel boundaries were performed fully-automatic with results being available instantaneously compared to human assessments which approximately takes three minutes per location. • The evaluated tool indicates usability in daily practice.

Cite

CITATION STYLE

APA

Pradella, M., Scott, M. B., Omer, M., Hill, S. K., Lockhart, L., Yi, X., … Markl, M. (2023). Fully-automated deep learning-based flow quantification of 2D CINE phase contrast MRI. European Radiology, 33(3), 1707–1718. https://doi.org/10.1007/s00330-022-09179-3

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free