Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design

13Citations
Citations of this article
63Readers
Mendeley users who have this article in their library.

Abstract

C-phycocyanin from Spirulina platensis was purified in aqueous two-phase systems (ATPS) of polyethylene glycol (PEG)/potassium phosphate, varying the molar mass of the PEG. Results using a full factorial design showed that an increase in the concentration of salt and decrease in the concentration of PEG caused an increment in the purification factor for all the ATPS studied. Optimization of the conditions of the purification was studied using a central composite rotatable design for each molar mass of PEG. The ATPS composed of 7% (w/w) PEG 1500 or 4% (w/w) PEG 8000 (g/gmol) and 23 or 22.5% (w/w) of phosphate resulted a purification factor of 1.6-fold for Cphycocyanin, with total and 57% recovery, respectively. Process conditions were optimized for the purification factor for the system with PEG 1500. The ATPS with 4% (w/w) PEG 4000 or 4% (w/w) PEG 6000 and 21% (w/w) phosphate resulted purification factors of 2.1 and 2.2-fold, recovering 100% and 73.5%, respectively of Cphycocyanin in the top phase.

Cite

CITATION STYLE

APA

Antelo, F. S., Costa, J. A. V., & Kalil, S. J. (2015). Purification of C-phycocyanin from Spirulina platensis in aqueous two-phase systems using an experimental design. Brazilian Archives of Biology and Technology, 58(1), 1–11. https://doi.org/10.1590/S1516-8913201502621

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free