Proximate human-robot teaming (pxHRT) is a complex subspace within human-robot interaction. Studies in this space involve a range of equipment and methods, including the ability to sense people and robots precisely. Research in this area draws from a wide variety of other fields, from human-human interaction to control theory, making the study design complex, particularly for those outside the field of HRI. In this paper, we introduce a framework that helps researchers consider tradeoffs across various task contexts, platforms, sensors, and analysis methods; metrics frequently used in the field; and common challenges researchers may face. We demonstrate the use of the framework via a case study which employs an autonomous mobile manipulator continuously engaging in shared workspace, handover, and co-manipulation tasks with people, and explores the effect of cognitive workload on pxHRT dynamics. We also demonstrate the utility of the framework in a case study with two groups of researchers new to pxHRT. With this framework, we hope to enable researchers, especially those outside HRI, to more thoroughly consider these complex components within their studies, more easily design experiments, and more fully explore research questions within the space of pxHRT.
CITATION STYLE
Matsumoto, S., Washburn, A., & Riek, L. D. (2022). A Framework to Explore Proximate Human-Robot Coordination. ACM Transactions on Human-Robot Interaction, 11(3). https://doi.org/10.1145/3526101
Mendeley helps you to discover research relevant for your work.