Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil

42Citations
Citations of this article
132Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

With COVID-19 surging across the world, understanding the effectiveness of intervention strategies on transmission dynamics is of primary global health importance. Here, we develop and analyze an epidemiological compartmental model using multi-objective genetic algorithm design optimization to compare scenarios related to strategy type, the extent of social distancing, time window, and personal protection levels on the transmission dynamics of COVID-19 in São Paulo, Brazil. The results indicate that the optimal strategy for São Paulo is to reduce social distancing over time with a stepping-down reduction in the magnitude of social distancing every 80-days. Our results also indicate that the ability to reduce social distancing depends on a 5–10% increase in the current percentage of people strictly following protective guidelines, highlighting the importance of protective behavior in controlling the pandemic. Our framework can be extended to model transmission dynamics for other countries, regions, states, cities, and organizations.

Cite

CITATION STYLE

APA

Pinto Neto, O., Kennedy, D. M., Reis, J. C., Wang, Y., Brizzi, A. C. B., Zambrano, G. J., … Zângaro, R. A. (2021). Mathematical model of COVID-19 intervention scenarios for São Paulo—Brazil. Nature Communications, 12(1). https://doi.org/10.1038/s41467-020-20687-y

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free