Weight-based multi-stream model for Multi-Modal Video Question Answering

1Citations
Citations of this article
6Readers
Mendeley users who have this article in their library.

Abstract

There has been a tremendous success in individual domains of Computer Vision, Natural Language Processing, and Knowledge Representation. Videos are a rich source of information with the multi-modal data forms of images, audio, and optionally subtitles blended. Current research is going on in combining these individual domains which have given rise to topics such as image captioning, visual question answering, and video question answering. Video Question Answering is a model which combines research topics like object detection and recognition, temporal information processing, visual attention, and natural language processing. In this paper, we propose a model with Attention Mechanism for Video Question Answering that assigns varying weights to the many pieces of information the video encompasses. The model combines the question with 3 streams i.e., video’s frames, subtitles, and objects to get the most probable answer. The model also receives the set of answer candidates as input and predicts one of them as the most probable answer since it has been trained and tested on the TVQA dataset.

Cite

CITATION STYLE

APA

Rajesh, M., Sridhar, S., Kulkarni, C., Shah, A., & Natarajan, S. (2023). Weight-based multi-stream model for Multi-Modal Video Question Answering. In Proceedings of the International Florida Artificial Intelligence Research Society Conference, FLAIRS (Vol. 36). Florida Online Journals, University of Florida. https://doi.org/10.32473/flairs.36.133306

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free