Polymer-based thermoelectric generators hold great appeal in the realm of wearable electronics as they enable the utilization of body heat for power generation. Fibers produced from conducting polymers for use in thermoelectric generators have high porosity and good flexibility, providing comfort-based performance advantages over thin films for wearable electronics. Some fiber processing techniques have been explored to produce textile-based thermoelectric generators; however, they fail to approach the conductivities of polymeric thin films. Ultrafine fibers solution processed through electrospinning yield fiber diameters on the nanoscale, allowing for high surface area to volume ratios and thus low thermal conductivity; however, a number of processing challenges in electrospinning conducting polymers limit the success of preparing high performing thermoelectric textiles. In this work, the specific processing challenges inherent to electrospinning conducting polymers are addressed for both n- and p-type materials. For the p-type polymer, 63 wt % PEDOT:PSS fibers are fabricated through solution formulation improvements yielding a conductivity of 3 S/cm and a power factor of 0.1 μW/mK2. The first of their kind n-type poly(NiETT)/PVA electrospun fibers were created yielding a conductivity of 0.11 S/cm and a power factor of 0.0036 μW/mK2. These nonwoven ultrafine fiber mats show progress toward achieving textile-based thermoelectric materials with equivalent performance of comparable polymeric thin films. This work shows the feasibility of creating ultrafine fibers for use in thermoelectric generators through electrospinning including the first demonstration of poly(NiETT)/PVA fibers.
CITATION STYLE
Ewaldz, E., Rinehart, J. M., Miller, M., & Brettmann, B. (2023). Processability of Thermoelectric Ultrafine Fibers via Electrospinning for Wearable Electronics. ACS Omega, 8(33), 30239–30246. https://doi.org/10.1021/acsomega.3c03019
Mendeley helps you to discover research relevant for your work.