Map3k14 as a regulator of innate and adaptive immune response during acute viral infection

8Citations
Citations of this article
18Readers
Mendeley users who have this article in their library.

Abstract

The replication of virus in secondary lymphoid organs is crucial for the activation of antigen-presenting cells. Balanced viral replication ensures the sufficient availability of antigens and production of cytokines, and both of which are needed for virus-specific immune activation and viral elimination. Host factors that regulate coordinated viral replication are not fully understood. In the study reported here, we identified Map3k14 as an important regulator of enforced viral replication in the spleen while performing genome-wide association studies of various inbred mouse lines in a model of lymphocytic choriomeningitis virus (LCMV) infection. When alymphoplasia mice (aly/aly, Map3k14aly/aly, or Nikaly/aly), which carry a mutation in Map3k14, were infected with LCMV or vesicular stomatitis virus (VSV), they display early reductions in early viral replication in the spleen, reduced innate and adaptive immune activation, and lack of viral control. Histologically, scant B cells and the lack of CD169+ macrophages correlated with reduced immune activation in Map3k14aly/aly mice. The transfer of wildtype B cells into Map3k14aly/aly mice repopulated CD169+ macrophages, restored enforced viral replication, and resulted in enhanced immune activation and faster viral control.

Cite

CITATION STYLE

APA

Hamdan, T. A., Bhat, H., Cham, L. B., Adomati, T., Lang, J., Li, F., … Lang, K. S. (2020). Map3k14 as a regulator of innate and adaptive immune response during acute viral infection. Pathogens, 9(2). https://doi.org/10.3390/pathogens9020096

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free