The existence of cavitation nuclei is one of the necessary conditions for liquid cavitation. Bubble nucleus is the most basic cavitation nucleus, and bubble nuclei size distribution is a parameter describing the population of gas nuclei. To study the dynamics of bubble nuclei population after artificial seeding under reduced pressure, a decompression chamber was built, combined with the artificial seeding system and the acoustic nuclei measurement system. After the nuclei seeding, the experimental study of the nuclei population dynamics with pressure and time was carried out. It is found that as the pressure decreases, the number density of larger size nuclei decreases, while the number density of smaller size nuclei increases. In the measured size range, the maximum value of number density of the nuclei size distribution increases. In addition, based on the theory of bubble dynamics, the growth process of the nucleus under reduced pressure is calculated and analyzed, which can realize the preliminary prediction of the nuclei population dynamics under reduced pressure.
CITATION STYLE
Yao, X., Li, Z., Sun, L., & Lu, H. (2020). A study on bubble nuclei population dynamics under reduced pressure. Physics of Fluids, 32(11). https://doi.org/10.1063/5.0026361
Mendeley helps you to discover research relevant for your work.