Trypanosomatidae are protozoans that include monogenetic parasites, such as the Blastocrithidia and Herpetomonas genera, as well as digenetic parasites, such as the Trypanosoma and Leishmania genera. Their life cycles alternate between insect vectors and mammalian hosts. The parasite’s life cycle involves symmetrical division and different transitional developmental stages. In trypanosomatids, the cytoskeleton is composed of subpellicular microtubules organized in a highly ordered array of stable microtubules located beneath the plasma membrane, the paraflagellar rod, which is a lattice-like struc- ture attached alongside the flagellar axoneme and a cytostome-cytopharynx. The complex life cycle, the extremely precise cytoskeletal organization and the single copy structures present in trypanosomatids provide interesting models for cell biology studies. The intro- duction of molecular biology, FIB/SEM (focused ion beam scanning electron microscopy) and electron microscopy tomography approaches and classical methods, such as negative staining, chemical fixation and ultrafast cryofixation have led to the determination of the three-dimensional (3D) structural organization of the cells. In this chapter,we highlight the recent findings on Trypanosomatidae cytoskeleton emphasizing their structural organiza- tion and the functional role of proteins involved in the biogenesis and duplication of cytoskeletal structures. The principal finding of this review is that all approaches listed above enhance our knowledge of trypanosomatids biology showing that cytoskeleton elements are essential to several important events throughout the protozoan life cycle.
CITATION STYLE
Vidal, J. C., & Souza, W. de. (2017). Morphological and Functional Aspects of Cytoskeleton of Trypanosomatids. In Cytoskeleton - Structure, Dynamics, Function and Disease. InTech. https://doi.org/10.5772/66859
Mendeley helps you to discover research relevant for your work.