Drosophila homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling

42Citations
Citations of this article
61Readers
Mendeley users who have this article in their library.

Abstract

Drosophila Homeodomain-interacting protein kinase (Hipk) has been shown to regulate in vivo, the stability of Armadillo, the transcriptional effector of Wingless signaling. The Wingless pathway culminates in the stabilization of Armadillo that, in the absence of signaling, is sequentially phosphorylated, polyubiquitinated and degraded. Loss-of-function clones for hipk result in reduced stabilized Armadillo, whereas overexpression of hipk elevates Armadillo levels to promote Wingless-responsive target gene expression. Here, we show that overexpression of hipk can suppress the effects of negative regulators of Armadillo to prevent its degradation in the wing imaginal disc. Hipk acts to stabilize Armadillo by impeding the function of the E3 ubiquitin ligase Skp1-Cul1-F-box (SCF)Slimb, thereby inhibiting Armadillo ubiquitination and subsequent degradation. Vertebrate Hipk2 displays a similar ability to prevent β-catenin ubiquitination in a functionally conserved mechanism. We find that Hipk's ability to inhibit SCFSlimb-mediated ubiquitination is not restricted to Armadillo and extends to other substrates of SCFSlimb, including the Hedgehog signaling effector Ci. Thus, similar to casein kinase 1 and glycogen synthase kinase 3, Hipk dually regulates both Wingless and Hedgehog signaling by controlling the stability of their respective signaling effectors, but it is the first kinase to our knowledge identified that promotes the stability of both Armadillo and Ci.

Author supplied keywords

Cite

CITATION STYLE

APA

Swarup, S., & Verheyen, E. M. (2011). Drosophila homeodomain-interacting protein kinase inhibits the Skp1-Cul1-F-box E3 ligase complex to dually promote Wingless and Hedgehog signaling. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9887–9892. https://doi.org/10.1073/pnas.1017548108

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free