Abstract
We study the combined effects of grain size and texture on the strength of nanocrystalline copper (Cu) and nickel (Ni) using a crystal-plasticity based mechanics model. Within the model, slip occurs in discrete slip events exclusively by individual dislocations emitted statistically from the grain boundaries. We show that a Hall-Petch relationship emerges in both initially texture and non-textured materials and our values are in agreement with experimental measurements from numerous studies. We find that the Hall-Petch slope increases with texture strength, indicating that preferred orientations intensify the enhancements in strength that accompany grain size reductions. These findings reveal that texture is too influential to be neglected when analyzing and engineering grain size effects for increasing nanomaterial strength.
Cite
CITATION STYLE
Yuan, R., Beyerlein, I. J., & Zhou, C. (2016). Coupled crystal orientation-size effects on the strength of nano crystals. Scientific Reports, 6. https://doi.org/10.1038/srep26254
Register to see more suggestions
Mendeley helps you to discover research relevant for your work.