Conductive SiC-ZrB2 composites were produced by subjecting a 40:60 (vol%) mixture of zirconium diboride (ZrB2) powder and β-silicon carbide (SiC) matrix to spark plasma sintering (SPS). Sintering was carried out for 5 min in an argon atmosphere at a uniaxial pressure and temperature of 50 MPa and 1500 °C, respectively. The composite sintered at a heating speed of 25 °C/min and an on/off pulse sequence of 12:2 was denoted as SZ12L. Composites SZ12H, SZ48H, and SZ10H were obtained by sintering at a heating speed of 100 °C/min and at on/off pulse sequences of 12:2, 48:8, and 10:9, respectively. The physical, electrical, and mechanical properties of the SiC-ZrB2 composites were examined and thermal image analysis of the composites was performed. The apparent porosities of SZ12L, SZ12H, SZ48H, and SZ10H were 13.35%, 0.60%, 12.28%, and 9.75%, respectively. At room temperature, SZ12L had the lowest flexural strength (286.90 MPa), whereas SZ12H had the highest flexural strength (1011.34 MPa). Between room temperature and 500 °C, the SiC-ZrB2 composites had a positive temperature coefficient of resistance (PTCR) and linear V-I characteristics. SZ12H had the lowest PTCR and highest electrical resistivity among all the composites. The optimum SPS conditions for the production of energy-friendly SiC-ZrB2 composites are as follows: 1) an argon atmosphere, 2) a constant pressure of 50 MPa throughout the sintering process, 3) an on/off pulse sequence of 12:2 (pulse duration: 2.78 ms), and 4) a final sintering temperature of 1500 °C at a speed of 100 °C/min and sintering for 5 min at 1500 °C.
CITATION STYLE
Lee, J. H., Ju, J. Y., Kim, C. H., & Shin, Y. D. (2011). A study on optimum spark plasma sintering conditions for conductive SiC-ZrB2 composites. Journal of Electrical Engineering and Technology, 6(4), 543–550. https://doi.org/10.5370/JEET.2011.6.4.543
Mendeley helps you to discover research relevant for your work.