Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells

33Citations
Citations of this article
42Readers
Mendeley users who have this article in their library.

This article is free to access.

Abstract

The thymus provides the physiological microenvironment critical for the development of T lymphocytes, the cells that orchestrate the adaptive immune system to generate an antigen-specific response. A diverse population of stroma cells provides surface-bound and soluble molecules that orchestrate the intrathymic maturation and selection of developing T cells. Forming an intricate 3D architecture, thymic epithelial cells (TEC) represent the most abundant and important constituent of the thymic stroma. Effective models for in and ex vivo use of adult TEC are still wanting, limiting the engineering of functional thymic organoids and the understanding of the development of a competent immune system. Here a 3D scaffold is developed based on decellularized thymic tissue capable of supporting in vitro and in vivo thymopoiesis by both fetal and adult TEC. For the first time, direct evidences of feasibility for sustained graft-resident T-cell development using adult TEC as input are provided. Moreover, the scaffold supports prolonged in vitro culture of adult TEC, with a retained expression of the master regulator Foxn1. The success of engineering a thymic scaffold that sustains adult TEC function provides unprecedented opportunities to investigate thymus development and physiology and to design and implement novel strategies for thymus replacement therapies.

Cite

CITATION STYLE

APA

Asnaghi, M. A., Barthlott, T., Gullotta, F., Strusi, V., Amovilli, A., Hafen, K., … Martin, I. (2021). Thymus Extracellular Matrix-Derived Scaffolds Support Graft-Resident Thymopoiesis and Long-Term In Vitro Culture of Adult Thymic Epithelial Cells. Advanced Functional Materials, 31(20). https://doi.org/10.1002/adfm.202010747

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free