The rate of global urbanization is exponentially increasing and reducing areas of natural vegetation. Remote sensing can determine spatiotemporal changes in vegetation and urban land cover. The aim of this work is to assess spatiotemporal variations of two vegetation indices (VI), the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), in addition land cover in and around Erbil city area between the years 2000 and 2015. MODIS satellite imagery and GIS techniques were used to determine the impact of urbanization on the surrounding quasi-natural vegetation cover. Annual mean vegetation indices were used to determine the presence of a spatiotemporal trend, including a visual interpretation of time-series MODIS VI imagery. Dynamics of vegetation gain or loss were also evaluated through the study of land cover type changes, to determine the impact of increasing urbanization on the surrounding areas of the city. Monthly rainfall, humidity and temperature changes over the 15-year-period were also considered to enhance the understanding of vegetation change dynamics. There was no evidence of correlation between any climate variable compared to the vegetation indices. Based on NDVI and EVI MODIS imagery the spatial distribution of urban areas in Erbil and the bare around it has expanded. Consequently, the vegetation area has been cleared and replaced over the past 15 years by urban growth.
CITATION STYLE
Hussein, S. O., Kovács, F., & Tobak, Z. (2017). Spatiotemporal Assessment of Vegetation Indices and Land Cover for Erbil City and Its Surrounding Using Modis Imageries. Journal of Environmental Geography, 10(1–2), 31–39. https://doi.org/10.1515/jengeo-2017-0004
Mendeley helps you to discover research relevant for your work.