Consequences and Control of Multiscale Order/Disorder in Chiral Magnetic Textures

4Citations
Citations of this article
8Readers
Mendeley users who have this article in their library.
Get full text

Abstract

Transition metal intercalated transition metal dichalcogenides (TMDs) are promising platforms for next-generation spintronic devices based on their wide range of electronic and magnetic phases, which can be tuned by varying the host lattice or intercalant’s identity, stoichiometry, or spatial order. Some of these compounds host a chiral magnetic phase in which the helical winding of magnetic moments propagates along a high-symmetry crystalline axis. Previous studies have demonstrated that variation in intercalant concentrations can have a dramatic effect on the formation of chiral domains and ensemble magnetic properties. However, a systematic and comprehensive study of how atomic-scale order and disorder impact these chiral magnetic textures is so far lacking. Here, we leverage a combination of imaging modes in the (scanning) transmission electron microscope (S/TEM) to directly probe (dis)order across multiple length scales and show how subtle changes in the atomic lattice can tune the mesoscale spin textures and bulk magnetic response in Cr1/3NbS2, with direct implications for the fundamental understanding and technological implementation of such compounds.

Cite

CITATION STYLE

APA

Goodge, B. H., Gonzalez, O., Xie, L. S., & Bediako, D. K. (2023). Consequences and Control of Multiscale Order/Disorder in Chiral Magnetic Textures. ACS Nano, 17(20), 19865–19876. https://doi.org/10.1021/acsnano.3c04203

Register to see more suggestions

Mendeley helps you to discover research relevant for your work.

Already have an account?

Save time finding and organizing research with Mendeley

Sign up for free